Influence of protein quality on baking performance of wheat bread

Stefano D’Amico

Institute of Food Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria

05th September 2014
Koprivnica
General Trends in Food and Nutrition

1. The biggest trend
 - Naturally Functional

2. Dairy's rebirth as a natural whole food
 - Dairy 2.0

3. Beyond the tipping point
 - Protein

4. An unstoppable global trend
 - Energy

5. Consumer thinking redefines a market
 - Weight Wellness

6. The snackification of everything
 - Snacking

7. A new frontier
 - Slow Energy

8. The demonisation of sugar
 - Sugar

9. A very smart strategy
 - Permission to Indulge

10. The consumer-led trend
 - Free-from

11. Opportunity for science and smaller companies
 - FortifiT

12. Communication: indulgence & naturalness key to kids success
 - Kids' Nutrition

The impact of food trends on bakery sales

A. Fremaux 2009: The future of European bakery - the shape of the industry through 2013
Definition of Bread Types

- **Fresh bread**
- **Industrial prepacked long-life bread**
- **Industrial prepacked part-baked bread**
 - **Ambient**
 - **Frozen**
- **“Soft” bread**
- **“Crisp” bread**

CONSUMER PRODUCTS

“Artisanal”
- Made from scratch on the premises

“Industrial”
- Bought fresh from industrial bakers

PRODUCTION METHOD

Bake-off

BAKING+BISCUIT ISSUE 06 2008
Market and Development of sold bakery products

- Share of industrial production is expected to reach 69% by 2016
- Increasing Bake-off share
 - More and more frozen doughs
Quality of different Bread Types

D. Curic et al. 2008, Food Research International 41: 714–719
Gluten Composition

Wieser 2007, Food Microbiology 24: 115–119
Dough Formation

Glutenin

Gliadin

Water

Gluten
Gluten Structure and Network

Wieser 2007, Food Microbiology 24: 115–119
Influence of HMWs on Dough and Bread Quality

<table>
<thead>
<tr>
<th>Assortment 1</th>
<th>Assortment 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Properties [18]</td>
<td>HMW</td>
</tr>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>Dough</td>
<td></td>
</tr>
<tr>
<td>R_{max}</td>
<td>0.85</td>
</tr>
<tr>
<td>Ext</td>
<td>-0.16</td>
</tr>
<tr>
<td>DDT</td>
<td>0.71</td>
</tr>
<tr>
<td>Gluten</td>
<td></td>
</tr>
<tr>
<td>R_{max}</td>
<td>0.90</td>
</tr>
<tr>
<td>Ext</td>
<td>-0.62</td>
</tr>
<tr>
<td>GI</td>
<td>0.82</td>
</tr>
<tr>
<td>Bread</td>
<td></td>
</tr>
<tr>
<td>MRMT</td>
<td>0.53</td>
</tr>
<tr>
<td>MBT</td>
<td>0.82</td>
</tr>
</tbody>
</table>

SED: Zeleny sedimentation value
MHE: maximum height of extensogram
BAQ: bread volume score
MBT: volume of micro-baking-test
EXT: Extensibility
DDT: dough development time
EXA: extension area of extensogram
RMT: volume of rapid-mix-test
Rmax: maximum resistance to extension
GI: gluten index

Influence of freezing of Dough and Bread Quality

- Gluten weakening
- Decreased Yeast Activity
- Structural Damage by formation of ice-crystals
 - Reduced textural and sensory Quality of Bake off Products

Sallas-Mellado and Chang 2003, Brazilian Archives of Biology and Technology 46 (3): 461-468
Changes in Gluten Structure due to Freezing

Meziani et al. 2012, LWT - Food Science and Technology 46:118-126
Changes in Gluten Structure due to Freezing

FIG. 1. CHANGES IN THE PROPORTION OF INSOLUBLE POLYMERIC PROTEIN (IPP) IN THE DOUGH AT DIFFERENT FREEZING RATES AND STORAGE TIMES

Influence of flour characteristics

Characteristics of Flour Samples

<table>
<thead>
<tr>
<th>Quality Tests</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein content, %</td>
<td>14.4</td>
<td>13.9</td>
<td>13.7</td>
<td>13.7</td>
</tr>
<tr>
<td>Ash content, %</td>
<td>0.52</td>
<td>0.54</td>
<td>0.58</td>
<td>0.60</td>
</tr>
<tr>
<td>Starch damage (Farrand unit)</td>
<td>21</td>
<td>23</td>
<td>11</td>
<td>25</td>
</tr>
<tr>
<td>Falling number value</td>
<td>538</td>
<td>566</td>
<td>337</td>
<td>500</td>
</tr>
<tr>
<td>Farinograph</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absorption, %</td>
<td>65.1</td>
<td>63.5</td>
<td>58.6</td>
<td>58.9</td>
</tr>
<tr>
<td>Dough development time, min</td>
<td>7.0</td>
<td>6.0</td>
<td>5.5</td>
<td>30.5</td>
</tr>
<tr>
<td>Gassing power, b,c mm Hg</td>
<td>459 ± 5</td>
<td>461 ± 8</td>
<td>519 ± 11</td>
<td>477 ± 5</td>
</tr>
<tr>
<td>Standard proofing height, b,d cm</td>
<td>10.0 ± 0</td>
<td>10.0 ± 15</td>
<td>10.1 ± 0</td>
<td>9.8 ± 0.1</td>
</tr>
<tr>
<td>Extensigraph</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum resistance, b,d BU</td>
<td>627 ± 6</td>
<td>623 ± 15</td>
<td>680 ± 10</td>
<td>1,273 ± 21</td>
</tr>
<tr>
<td>Extensibility, b,d mm</td>
<td>121 ± 3</td>
<td>120 ± 2</td>
<td>137 ± 2</td>
<td>102 ± 3</td>
</tr>
<tr>
<td>Loaf volume, b,d cm3</td>
<td>792 ± 8</td>
<td>780 ± 5</td>
<td>838 ± 5</td>
<td>863 ± 8</td>
</tr>
</tbody>
</table>

- Similar protein content
- Big differences in Extensograph values
 - Strong gluten (high resistance) lowest loss in volume after frozen storage
 - Protein Quality more important than quantity

INOUE and BUSHEK 1992, Cereal Chem. 69:423-428
Summary

• Convenience Trend leads to increase of Bake off Products
 ➢ Demand to improve Quality
• Gluten depolymerisation
 ➢ more viscous and less tensile strength
• Decreased Yeast Activity less influence than gluten network weakening on Frozen Dough Quality
 ➢ Further research about protein quality needed
 ➢ Demand for flours and wheat varieties with high gluten strength
Pilot plant of the Institute of Food Technology

THANK YOU for your attention!